Noise-Driven Phenotypic Heterogeneity with Finite Correlation Time in Clonal Populations
نویسندگان
چکیده
There has been increasing awareness in the wider biological community of the role of clonal phenotypic heterogeneity in playing key roles in phenomena such as cellular bet-hedging and decision making, as in the case of the phage-λ lysis/lysogeny and B. Subtilis competence/vegetative pathways. Here, we report on the effect of stochasticity in growth rate, cellular memory/intermittency, and its relation to phenotypic heterogeneity. We first present a linear stochastic differential model with finite auto-correlation time, where a randomly fluctuating growth rate with a negative average is shown to result in exponential growth for sufficiently large fluctuations in growth rate. We then present a non-linear stochastic self-regulation model where the loss of coherent self-regulation and an increase in noise can induce a shift from bounded to unbounded growth. An important consequence of these models is that while the average change in phenotype may not differ for various parameter sets, the variance of the resulting distributions may considerably change. This demonstrates the necessity of understanding the influence of variance and heterogeneity within seemingly identical clonal populations, while providing a mechanism for varying functional consequences of such heterogeneity. Our results highlight the importance of a paradigm shift from a deterministic to a probabilistic view of clonality in understanding selection as an optimization problem on noise-driven processes, resulting in a wide range of biological implications, from robustness to environmental stress to the development of drug resistance.
منابع مشابه
Negative frequency‐dependent interactions can underlie phenotypic heterogeneity in a clonal microbial population
Genetically identical cells in microbial populations often exhibit a remarkable degree of phenotypic heterogeneity even in homogenous environments. Such heterogeneity is commonly thought to represent a bet-hedging strategy against environmental uncertainty. However, evolutionary game theory predicts that phenotypic heterogeneity may also be a response to negative frequency-dependent interaction...
متن کاملClonally expanded human airway smooth muscle cells exhibit morphological and functional heterogeneity
BACKGROUND Mesenchyme-derived airway cell populations including airway smooth muscle (ASM) cells, fibroblasts and myofibroblasts play key roles in the pathogenesis of airway inflammation and remodeling. Phenotypic and functional characterisation of these cell populations are confounded by their heterogeneity in vitro. It is unclear which mechanisms underlie the creation of these different sub-p...
متن کاملGenetic instability and divergence of clonal populations in colon cancer cells in vitro.
The accumulation of multiple chromosomal abnormalities is a characteristic of the majority of colorectal cancers and has been attributed to an underlying chromosomal instability. Genetic instability is considered to have a key role in the generation of genetic and phenotypic heterogeneity in cancer cells. To shed light on the dynamics of chromosomal instability in colon cancer cells, we have an...
متن کاملStochastic gene expression in a single cell.
Clonal populations of cells exhibit substantial phenotypic variation. Such heterogeneity can be essential for many biological processes and is conjectured to arise from stochasticity, or noise, in gene expression. We constructed strains of Escherichia coli that enable detection of noise and discrimination between the two mechanisms by which it is generated. Both stochasticity inherent in the bi...
متن کاملBistable Expression of Virulence Genes in Salmonella Leads to the Formation of an Antibiotic-Tolerant Subpopulation
Phenotypic heterogeneity can confer clonal groups of organisms with new functionality. A paradigmatic example is the bistable expression of virulence genes in Salmonella typhimurium, which leads to phenotypically virulent and phenotypically avirulent subpopulations. The two subpopulations have been shown to divide labor during S. typhimurium infections. Here, we show that heterogeneous virulenc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2015